organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

3-(1*H*-Pyrrol-2-yl)-1*H*-pyrazole forms an unusual hydrogen-bonded two-dimensional (3,4)-connected net

Katie E. R. Marriott, Colin A. Kilner and Malcolm A. Halcrow*

School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, England Correspondence e-mail: m.a.halcrow@leeds.ac.uk

Received 18 August 2009 Accepted 28 August 2009 Online 5 September 2009

The title compound, $C_7H_7N_3$, is the first crystallographically characterized 1*H*-pyrrolyl-1*H*-pyrazole derivative and contains two unique molecules in its asymmetric unit (Z' = 2). These molecules associate into centrosymmetric tetramers through N-H···N hydrogen bonding, including a cyclic dimerization of one of the two unique pyrazole rings. These tetramers are linked further by two weaker N-H··· π contacts to give a novel two-dimensional (3,4)-connected net with a ($3^2.8$)₂(3.8^2)₂ topology.

Comment

The 1*H*-pyrazole ring is an attractive synthon in inorganic supramolecular chemistry, since it possesses a metal-binding Lewis basic N-donor, and a Lewis acidic pyrrolic N—H group, in adjacent sites. A pyrazole ring can therefore bind a metal cation and anion simultaneously, and several 1*H*-pyrazole complexes have proved to be useful hosts for inorganic anions (Pérez & Riera, 2008). As part of our own investigations of the supramolecular chemistry of N—H pyrazole derivatives (Renard *et al.*, 2002, 2006; Liu *et al.*, 2004; Pask *et al.*, 2006; Jones *et al.*, 2006), we have achieved the first synthesis of the title compound, (I). Given the well known ability of pyrrole

derivatives to act as anion hosts in their own right (Sessler, Camiolo & Gale, 2003), the combination of pyrrole and pyrazole groups in (I) makes it a potentially useful reagent for supramolecular chemistry. The Cambridge Structural Database (CSD, Version of July 2009; Allen, 2002) contains no other 1*H*-pyrrolyl-1*H*-pyrazole derivatives, although protonated and *N*-methylated derivatives of 3,5-bis(pyrrol-2-yl)pyrazole have been crystallographically characterized (Maeda *et al.*, 2007).

The asymmetric unit of (I) contains two unique molecules, labelled A and B (Fig. 1). The molecules adopt essentially the same conformation, with the 3-substituted tautomer at the pyrazole ring and syn-pyrrole and pyrazole groups that are almost coplanar. The dihedral angle between the least-squares planes of the two heterocyclic rings is $4.57 (11)^{\circ}$ for molecule A and 10.15 (7)° for molecule B. Molecules A and B associate through the N6B-H6B···N2A hydrogen bond between the pyrrole group of molecule A and the pyrazole ring of molecule B (Fig. 1). Molecule B then forms a hydrogen-bonded dimer with its symmetry equivalent related by the inversion centre at $(0, 0, \frac{1}{2})$, their pyrazole rings forming a cyclic dimer through the N1B-H1B···N2Bⁱⁱⁱ interaction [symmetry code: (iii) -x, -y, 1 - z and its symmetry equivalent (Fig. 1). This cyclic dimer motif is common in crystalline pyrazoles substituted at the C3 and/or C5 positions (Claramunt et al., 2006). It is noteworthy that (I) does not adopt the alternative supramolecular dimer motif that is often exhibited by crystalline (1H-pyrrol-2-yl)aldimines (Fig. 2; see e.g. Franceschi et al., 2001; Sessler,

A view of the centrosymmetric hydrogen-bonded tetramer in the crystal structure of (I), showing the atom-numbering scheme employed. The additional intermolecular $N-H\cdots\pi$ interactions linking these tetramers into a two-dimensional network are not shown. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (iii) -x, -y, 1 - z.]

Figure 2

Alternative dimer structure which could have been adopted by (I), based on the cyclic dimer motif exhibited by (1*H*-pyrrol-2-yl)aldimines (Munro *et al.*, 2006).

Figure 3

View of the intermolecular environment about molecule A, showing the N-H···N and N-H··· π interactions. See Fig. 1 for the full atomnumbering scheme. [Symmetry codes: (i) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (ii) $x - \frac{1}{2}$, $-y + \frac{1}{2}, z - \frac{1}{2}$

Figure 4

The topology of the $(3.8^2)_2(3^2.8^2)_2$ net formed by the intermolecular N-H···N and N-H··· π hydrogen bonds in (I). The view is parallel to the $(10\overline{1})$ plane, with the b axis horizontal. The intermolecular links are between the centroids of each molecule.

Berthon-Gelloz et al., 2003; Matsui et al., 2004; Munro et al., 2006; Carabineiro et al., 2007; Wang et al., 2007).

The two N-H groups in molecule A form intermolecular N-H··· π contacts to the two unique pyrrole rings; these are $N1A - H1A \cdots XA^{i}$ and $N6A - H6A \cdots XB^{ii}$ [symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$], where XA and XB are the centroids of the pyrrole rings of molecules A and B, respectively (Fig. 3 and Table 1). The H $\cdots \pi$ distances (2.55) and 2.68 Å, respectively) are longer than the N-H···N hydrogen bonds in the structure, but still 0.2-0.4 Å shorter than the sum of the van der Waals radii of an aromatic group and an H atom (Pauling, 1960). In total, molecule A forms N-H···N or N-H··· π contacts to four other adjacent molecules, while molecule B is connected to three neighbours. These interactions combine to give a puckered two-dimensional (3,4)-connected network running parallel to the crystallographic $(10\overline{1})$ plane. The topology of the network is $(3.8^2)_2(3^2.8^2)_2$ in the short Schläfli notation (Fig. 4). While several different two-dimensional (3,4)-connected nets have been reported before, to our knowledge, this example is new. The most common topology of this type in molecular crystals is $(4.6^2)(4^2.6^2.8^2)$, which has been observed on at least five previous occasions (Zhong et al., 2001; Zheng et al., 2004; Xu et al., 2006; Xue et al., 2008; Li et al., 2008). Other known (3,4)connected two-dimensional networks in metal-organic stuctures include (3.8²)(4².8²) (Zhong et al., 2008), (4².6)(4².6⁴) (Qi et al., 2008) and the V_2O_5 net $(4^2.6)(4^2.6^3.8)$ (Li et al., 2009).

Experimental

Compound (I) was prepared following the procedure of Lin & Lang (1977). A solution of 2-acetylpyrrole (20 g, 0.18 mol) in dimethylformamide dimethyl acetal (100 g, 0.84 mol) was refluxed under N₂ for 48 h. Evaporation of the solvent gave a dark-brown solid residue that was purified by dissolution in CH₂Cl₂ and filtration through a silica plug. Pure 3-dimethylamino-1-(1H-pyrrol-2-yl)prop-2-en-1-one was obtained from the resultant solution as a yellow solid by addition of ethyl acetate. A solution of this intermediate (12 g, 0.073 mol) and hydrazine monohydrate (25 g, 0.50 mol) in methanol (200 ml) was refluxed for 6 h. The reaction was quenched with water and the solution extracted with CH_2Cl_2 (3 × 100 ml). Evaporation of the extracts to dryness yielded an orange oil which slowly solidified upon storage at 253 K. Two further recrystallizations from CH2Cl2-hexanes (3:1 v/v) afforded analytically pure yellow crystals of (I) (yield 5.5 g, 57%), one of which was used for analysis. Analysis found: C 62.9, H 5.3, N 31.5%; calculated for $C_7H_7N_3$: C 63.1, H 5.3, N 31.6%. ¹H NMR $[(CD_3)_2SO, 298 \text{ K}]: \delta 6.09 (d, J = 2.6 \text{ Hz}, 1\text{H}), 6.41 (s, 1\text{H}), 6.47 (d, J =$ 2.0 Hz, 1H), 6.79 (d, J = 1.3 Hz, 1H), 7.62 (s, 1H), 11.14 (br s, 1H), 12.72 (br s, 1H); EI MS m/z: 133.0 ($[M]^+$), 104.0 ($[M-N_2]^+$).

Crystal data

$C_7H_7N_3$	V = 1378.7 (4) Å ³
$M_r = 133.16$	Z = 8
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 10.442 (2) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 13.004 (2) Å	$T = 150 { m K}$
c = 10.8849 (19) Å	$0.18 \times 0.15 \times 0.09 \text{ mm}$
$\beta = 111.119 \ (9)^{\circ}$	

Data collection

Bruker X8 APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2002) $T_{\min} = 0.795, T_{\max} = 0.925$

17932 measured reflections 3601 independent reflections 2789 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.040$

Table 1

Hydrogen-bond geometry (Å, °).

XA and XB are the centroids of the pyrazole rings of molecules A and B, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$ \begin{array}{c} N1A - H1A \cdots XA^{i} \\ N6A - H6A \cdots XB^{ii} \\ N1B - H1B \cdots N2B^{iii} \\ N6B - H6B \cdots N2A \end{array} $	0.90 (2)	2.55 (2)	3.31	143
	0.911 (16)	2.68	3.32	127
	0.892 (15)	2.193 (15)	2.9512 (15)	142.5 (13)
	0.880 (16)	2.204 (16)	2.9952 (16)	149.3 (13)

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) -x, -y, -z + 1.

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	237 parameters
$wR(F^2) = 0.111$	All H-atom parameters refined
S = 1.02	$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
3601 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

The pyrrole and pyrazole rings in molecules A and B were distinguished by the isotropic displacement parameters of atoms N1 and C10, by the absence of an H atom on atom N2 in the Fourier map, and by the short hydrogen bonds accepted by both pyrazole N2 atoms. All H atoms were located in a difference Fourier map and allowed to refine freely. The refined C—H distances are in the range 0.952 (17)–1.001 (15) Å and the N—H distances are in the range 0.880 (16)–0.911 (16) Å.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: local program.

The authors acknowledge the University of Leeds for funding.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GG3214). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380–388. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Carabineiro, S. A., Silva, L. C., Gomes, P. T., Pereira, L. C. J., Veiros, L. F., Pascu, S. I., Duarte, M. T., Namorado, S. & Henriques, R. T. (2007). *Inorg. Chem.* 46, 6880–6890.
- Claramunt, R. M., Cornago, P., Torres, V., Pinilla, E., Torres, M. R., Samat, E., Lokshin, V., Valés, M. & Elguero, J. (2006). J. Org. Chem. 71, 6881–6891.
- Franceschi, F., Guillemot, G., Solari, E., Floriani, C., Re, N., Birkedal, H. & Pattison, P. (2001). Chem. Eur. J. 7, 1468–1478.
- Jones, L. F., Camm, K. D., Kilner, C. A. & Halcrow, M. A. (2006). CrystEngComm, 8, 719–728.
- Li, S.-L., Lan, Y.-O., Ma, J.-F., Yang, J., Wei, G.-H., Zhang, L.-P. & Su, Z.-M. (2008). Cryst. Growth Des. 8, 675–684.
- Li, X., Zha, M.-Q., Wang, X.-W. & Cao, R. (2009). Inorg. Chim. Acta, 362, 3357–3363.
- Lin, Y. & Lang, S. A. Jr (1977). J. Heterocycl. Chem. 14, 345-347.
- Liu, X., McAllister, J. A., de Miranda, M. P., McInnes, E. J. L., Kilner, C. A. & Halcrow, M. A. (2004). *Chem. Eur. J.* 10, 1827–1837.
- Maeda, H., Ito, Y., Kusunose, Y. & Nakanishi, T. (2007). Chem. Commun. pp. 1136–1138.
- Matsui, S., Yoshida, Y., Takagi, Y., Spaniol, T. P. & Okuda, J. (2004). J. Organomet. Chem. 689, 1155–1164.
- Munro, O. Q., Joubert, S. D. & Grimmer, C. D. (2006). Chem. Eur. J. 12, 7987–7999.
- Pask, C. M., Camm, K. D., Bullen, N. J., Carr, M. J., Clegg, W., Kilner, C. A. & Halcrow, M. A. (2006). *Dalton Trans.* pp. 662–664.
- Pauling, L. (1960). *The Nature of the Chemical Bond*, 3rd ed, pp. 257–264. Ithaca: Cornell University Press.
- Pérez, J. & Riera, L. (2008). Chem. Commun. pp. 533-543.
- Qi, Y., Luo, F., Che, Y. & Zheng, J. (2008). Cryst. Growth Des. 8, 606–611.
- Renard, S. L., Kilner, C. A., Fisher, J. & Halcrow, M. A. (2002). J. Chem. Soc. Dalton Trans. pp. 4206–4212.
- Renard, S. L., Sylvestre, I., Barrett, S. A., Kilner, C. A. & Halcrow, M. A. (2006). *Inorg. Chem.* 45, 8711–8718.
- Sessler, J. L., Berthon-Gelloz, G., Gale, P. A., Camiolo, S., Anslyn, E. V., Anzenbacher, P. Jr, Furuta, H., Kirkovits, G. J., Lynch, V. M., Maeda, H., Morosini, P., Scherer, M., Shriver, J. & Zimmerman, R. S. (2003). *Polyhedron*, **22**, 2963–2983.
- Sessler, J. L., Camiolo, S. & Gale, P. A. (2003). Coord. Chem. Rev. 240, 17–55. Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, Y., Fu, H., Peng, A., Zhao, Y., Ma, J., Ma, Y. & Yao, J. (2007). Chem. Commun. pp. 1623–1625.
- Xu, Y., Yuan, D., Wu, B., Han, L., Wu, M., Jiang, F. & Hong, M. (2006). Cryst. Growth Des. 6, 1168–1174.
- Xue, L., Luo, F., Che, Y.-X. & Zheng, J.-M. (2008). J. Coord. Chem. 61, 363– 371.
- Zheng, Y.-Z., Tong, M.-L. & Chen, X.-M. (2004). New J. Chem. 28, 1412–1415.
- Zhong, J. C., Munakata, M., Kuroda-Sowa, T., Maekawa, M., Suenaga, Y. & Konaka, H. (2001). *Inorg. Chim. Acta*, **322**, 150–156.
- Zhong, R.-Q., Zou, R.-Q., Du, M., Jiang, L., Yamada, T., Maruta, G., Takeda, S. & Xu, Q. (2008). *CrystEngComm*, **10**, 605–613.